The Polyphenyl Chains with Extremal Edge – Wiener Indices ∗
نویسندگان
چکیده
The edge-Wiener index of a connected graph is the sum of the distances between all pairs of edges of the graph. In this paper, we determine the polyphenyl chains with minimum and maximum edge-Wiener indices among all the polyphenyl chains with h hexagons. Moreover, explicit formulas for the edge-Wiener indices of extremal polyphenyl chains are obtained.
منابع مشابه
The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملTree-like Polyphenyl Chains with Extremal Degree Distance
Let G be a graph with vertex set V(G) and edge set E(G). For any two vertices x and y in V(G), the distance between x and y, denoted by d(x,y), is the length of the shortest path connecting x and y. The degree of a vertex v in G is the number of neighbors of v in G. Numbers reflecting certain structural features of organic molecules that are obtained from the molecular graph are usually called ...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملOn the edge reverse Wiener indices of TUC4C8(S) nanotubes
The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.
متن کاملA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
متن کامل